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There are ever more compelling tools available for neuroscience research, ranging from selective genetic tar-
geting to optogenetic circuit control to mapping whole connectomes. These approaches are coupled with a
deep-seated, often tacit, belief in the reductionist program for understanding the link between the brain and
behavior. The aim of this program is causal explanation through neural manipulations that allow testing of
necessity and sufficiency claims. We argue, however, that another equally important approach seeks an
alternative form of understanding through careful theoretical and experimental decomposition of behavior.
Specifically, the detailed analysis of tasks and of the behavior they elicit is best suited for discovering compo-
nent processes and their underlying algorithms. In most cases, we argue that study of the neural implemen-
tation of behavior is best investigated after such behavioral work. Thus, we advocate amore pluralistic notion
of neuroscience when it comes to the brain-behavior relationship: behavioral work provides understanding,
whereas neural interventions test causality.
Introduction
Advances in technology have allowed the study of neurons,

including their component parts and molecular machinery, to

an unprecedented degree. This work promises to yield much

new information about brain structure and physiology inde-

pendent of behavior—for example, the biophysics of receptors

or details of spatial summation in dendrites. In addition, new

methods such as optogenetics allow some causal relation-

ships between brain and behavior to be determined. Here we

will argue, however, that detailed examination of brain parts

or their selective perturbation is not sufficient to understand

how the brain generates behavior (Figure 1). One reason is

that we have no prior knowledge of what the relevant level of

brain organization is for any given behavior (Figure 1A).

When this concern is coupled with the brain’s deep degener-

acy, it becomes apparent that the causal manipulation

approach is not sufficient for gaining a full understanding of

the brain’s role in behavior (Marom et al., 2009). The same

behavior may result from alternative circuit configurations

(Marder and Goaillard, 2006), from different circuits altogether

or the same circuit may generate different behaviors (Katz,

2016) (Figures 1D and 1E). This concern has been voiced

before in a variety of ways (Anderson, 1972; Marr, 1982/

2010; Oatley, 1978), but we think that it is useful to revisit

and reframe the arguments at a time of understandable excite-

ment about ever more effective interventionist approaches in

neuroscience.
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An analogy from computer science that has both historical and

conceptual appeal is the distinction between software and hard-

ware; whereby the software represents ‘‘what’’ the brain (or one

of its modules) is doing, and the hardware represents ‘‘how’’ it is

doing it. Sternberg has stated it as the ‘‘distinction between pro-

cessors and the processes that they implement’’ (Sternberg,

2011, p. 158). The core question we address here is whether

the processes governing behavior are best inferred from exam-

ination of the processors. In a nice irony, the computer science

analogy has come full circle with a provocative study that applied

numerous neuroscience techniques to a single microprocessor

(analogous to a brain) in an attempt to understand how it controls

three classic videogames (analogous to behaviors) (Jonas and

Kording, 2017). Crucial to the experiment was that the answer

was known a priori: the processor’s operations can be drawn

as an algorithmic flow chart. The sobering result was that per-

forming interventionist neuroscience on the processor could

not explain how the processor worked. We have more to say

about this study later.

Neuroscience is replete with cases that illustrate the funda-

mental epistemological difficulty of deriving processes from

processors. For example, in the case of the roundworm (Caeno-

rhabditis elegans), we know the genome, the cell types, and

the connectome—every cell and its connections (Bargmann,

1998; White et al., 1986). Despite this wealth of knowledge,

our understanding of how all this structure maps onto the

worm’s behavior remains frustratingly incomplete. Thus, it is
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Figure 1. The Multiple Potential Mappings
between Neural Activity Patterns and
Natural Behaviors
(A) Of all the possible activity patterns of a brain in
a dish (big pale blue circle), only a subset of
these (medium dark blue circle) will be relevant in
behaving animals in their natural environment (big
magenta circle).
(B) Designing behavioral tasks that are ecologically
valid (small magenta circle) ensures discovery of
neural circuits relevant to the naturalistic behavior
(small blue circle). Tasks that elicit species-typical
behaviors with species-typical signals are exam-
ples (see Box 1).
(C) In order to study animal behavior in the lab,
the task studied (small white circle) might be so
non-ecological it elicits neural responses (small
blue circle) that are never used in natural
behaviors.
(D) Multiple Realizability: different patterns of ac-
tivity or circuit configurations (small blue circles)
can lead to the same behavior (small magenta
circle).
(E) The same neural activity pattern (small blue
circle) can be used in two different behaviors (two
magenta circles). The circle with dashed perim-
eter in (B)–(E) is the subset of all possible neural
activity patterns that map onto natural behaviors
(from A).
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readily apparent that it is very hard to infer themapping between

the behavior of a system and its lower-level properties by only

looking at the lower-level properties (Badre et al., 2015; Caran-

dini, 2012; Cooper and Peebles, 2015; Gomez-Marin et al.,

2014). When we ask, ‘‘How does the brain generate behavior,’’

we are primarily asking about how putative processing modules

are organized so that they combine to generate behavior in a

particular task environment. Relying solely on the collection of

neural data, with behavior incorporated as an after-thought

(and typically over-constrained; Box 1; Figure 1C), will not

lead to meaningful answers. This is a question best answered

through precise hypotheses articulated in an a priori conceptual

framework, careful task design, and the collection of behav-

ioral data.

How Did We Get Here?
New technologies have enabled the acquisition of massive and

intricate datasets, and the means to analyze them have become

concomitantly more complex. This in turn has led to a need for

experts in computation and data analysis, with a reduced

emphasis on organismal-level thinkers who develop detailed

functional analyses of behavior, its developmental trajectory,

and its evolutionary basis. Deep and thorny questions like

‘‘what would even count as an explanation in this context,’’

‘‘what is a mechanism for the behavior we are trying to under-

stand,’’ and ‘‘what does it mean to understand the brain’’ get

sidelined. The emphasis in neuroscience has transitioned from

these larger scope questions to the development of technolo-

gies, model systems, and the approaches needed to analyze

the deluge of data they produce. Technique-driven neurosci-

ence could be considered an example of what is known as the

substitution bias: ‘‘[.] when faced with a difficult question, we

often answer an easier one instead, usually without noticing

the substitution’’ (Kahneman, 2011, p. 12).
In an interesting historical parallel to the argument we make

here, the historian of science Lily Kay described how the disci-

pline of molecular biology also arose from placing a premium

on technology and its application to simple model systems

(Kay, 1996). She quotes with concern Monod’s line, ‘‘What

is true for the bacterium is true for the elephant’’ (Kay, 1996,

p. 5). Here we caution similarly against the idea that what is

true for the circuit is true for the behavior. Monod’s line has

echoed through to the present day with the argument that mo-

lecular biology and its techniques should serve as the model

for understanding in neuroscience (Bickle, 2016). We disagree

with this totalizing reductionist view but take it as evidence that

excessive faith in molecular and cellular biology may be partially

to blame for the current dominance of interventionist explana-

tions in neuroscience. We fully acknowledge the crucial role

that technology plays in advancing biological knowledge and

the value of interventionist approaches, but this tool-driven trend

is not sufficient for understanding the brain-behavior relation-

ship. Neural data obtained from new methods cannot substitute

for developing new conceptual frameworks that provide the

mapping between such neural data and behavior in an algo-

rithmic sense (and not just a correlative or even causal way). Ac-

complishing this task requires hypotheses and theories based

on careful dissection of behavior into its component parts or sub-

routines (Cooper and Peebles, 2015). The behavioral work needs

to be as fine-grained as work at the neural level. Otherwise one is

imperiled by a granularity mismatch between levels that prevents

substantive alignment between different levels of description

(Poeppel and Embick, 2005).

The first step for developing conceptual frameworks that

meaningfully relate neural circuits to behavioral predictions is

to design hypothesis-based behavioral experiments. Despite

this pure behavioral step being of critical importance and highly

informative in its own right, it has increasingly been marginalized
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Box 1. Behavior

Tinbergen defined behavior as ‘‘The total movements made by the intact animal’’ (Tinbergen, 1955). Authors of a recent survey

designed to investigate how working scientists define behavior came up with the following attempt at an updated definition,

‘‘Behavior is the internally coordinated responses (actions or inactions) of whole living organisms (individuals or groups) to internal

and/or external stimuli, excluding responses more easily understood as developmental changes’’ (Levitis et al., 2009). The core of

this definition is that behavior is the ‘‘internally coordinated responses . to internal and/or external stimuli.’’ Clearly, however,

some stimuli are more important than others in furthering our understanding of animals and their nervous systems.

Unfortunately, animals do not raise a checkered flag to indicate when they are about to perform a behavior, or signal when it ends.

They are constantly in motion and responding to whatever is around them, which invites the following easy mistake: since an an-

imal is responding to stimuli, and physiological correlates are measurable, one is therefore studying an animal’s behavior (see the

‘‘overly constrained behavior’’ of Figure 1C). If, following the lead of 20th century ethologists, we treat behavior as no less an

evolved entity than is, say, the shape of the humerus (Tinbergen, 1963), then correctly labeling something as behavior is contingent

on the outcome of an investigation into what the animal does to ensure its survival in its native habitat. In this way it would be

discovered, for example, that bats navigate through dense forests in total darkness while hunting insects and that rodents beat

a hasty retreat when they see a hawk diving towards them, while not responding to similarly sized birds flying straight over. It is

therefore a significant confusion to label a coordinated response to a stimulus a ‘‘behavior’’ without first determining the relevance

of the response to the animal’s natural life (Tinbergen’s second question, Figure 4). Not doing so is to conflate a ‘‘stimulus

response’’ with a spatio-temporal pattern that is the product of selection over time. While any perturbation applied to an animal

can lead to productive lines of inquiry, whether or not it is founded in anything ethological, the history of many of the most produc-

tivemoments in neuroscience is a history of having ingeniously abstracted an animal’sUmwelt (Von Uexk€ull, 1992) in such away as

to admit of controlled, repeatable experiments.

In light of the preceding, placing a behaving animal in a situation where it perceives sensory events that are behaviorally relevant,

and can act on them in approximately the same way as if they were embedded in the world, can be enormously useful (Figure 1B).

For example, engaging a subject with the real or simulated presence of another can capture behavioral principles that are common

across species. Doing so with marmoset monkeys revealed vocal turn-taking behavior with similar patterns of phase-locking and

entrainment as in human communication (Takahashi et al., 2013). Eschewing the purely big data approach where behavioral data

are acquired blindly from large numbers of animals through automation and without regard for the individual (Anderson and Per-

ona, 2014), this organismal-level study led to insights into both developmental (Takahashi et al., 2015) and evolutionary (Borjon and

Ghazanfar, 2014) processes, and, subsequently, to computational principles shared across species (Takahashi et al., 2012).

Similar ethological approaches in other species have led to a number of behaviorally driven investigations of neural level mecha-

nisms: fish (Bass and Chagnaud, 2012), frogs (Leininger and Kelley, 2015), and birds (Benichov et al., 2016).

Ultimately, the most effective approach may be to simulate the entire natural task environment in order to elicit the full range of

adaptive behavioral possibilities. Virtual reality (VR) systems developed for a host of model systems, including rodents, flies,

and fish, offer such an approach (Dombeck and Reiser, 2012). VR systems were originally an answer to the problem of how to

mediate the uneasy marriage of the tightly controlled but non-ethological world of laboratory physiology, and the poorly controlled

but ethologically relevant world of the behaviors studied by ethologists (MacIver, 2009). It is critically important to realize, however,

that effective use of VR requires a fine-grained quantitative understanding of the behavior under study as it occurs in the unim-

peded animal. Only then can the investigator assess, for example, whether the VR system is in fact able to trick the animal into

believing it is in the world as it would normally operate within. For example, a VR system has been developed by which we can

reliably elicit prey capture behavior in larval zebrafish (which hunt Paramecia) (Bianco et al., 2011). Careful behavioral work on

the free-swimming animal showed that prey detection is marked by the fish’s eyes verging together to point to the prey (Bianco

et al., 2011; Patterson et al., 2013). This eye movement is not seen during any other behaviors. With that knowledge in hand,

we can assess the success of a VR system by how often we can see the eyes move in this manner when we display artificial Para-

mecia on a small screen in front of the animal, which is otherwise fixed in place by being embedded in a block of agar.

Understanding behavior and its component processes at the level of detail necessary to generate meaningful neural level insights

will require an emphasis on natural behaviors performed by individuals. Although there are new technologies enabling the blind

acquisition of massive behavioral datasets and the application of machine learning algorithms (Anderson and Perona, 2014),

they will not lead to the detailed functional analyses of ethological behavior, its developmental trajectory, and its evolutionary basis

that are necessary for appropriately constrained implementation-level theories.
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or at best postponed (Anderson and Perona, 2014). It is disturb-

ingly common for studies to include behavior as simply a hasty

add-on in papers that are otherwise crammed full of multiple

techniques, types of results, and even species. It is as if every

paper needs to be a methodological decathlon in order to be

considered important. Behavior must be seen as something
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that can stand alone as a foundational phenomenon in its own

right (Box 1).

Why We Still Need Behavior
Perhaps the best-known example of a framework devised to

formalize what it means to understand the link between brain
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Figure 2. Marr’s Three Levels of Analysis
(A) A bird attempts to fly (goal) by flapping
its wings (algorithmic realization) whose aero-
dynamics depend on the features of its
feathers (physical implementation). Feathers
‘‘have something to do’’ with flight and flapping,
but what level of understanding do we achieve
if we dissect the properties of the feathers
alone? Bats fly but don’t have feathers, and
birds can fly without flapping.
(B) The relationship between the three levels is
not arbitrary; step 1 comes before step 2: the
algorithmic level of understanding is essential to
interpret its mechanistic implementation. Step 2:
implementation level work feeds back to inform
the algorithmic level.
(C) An epistemological bias toward manipulation-
based view of understanding induced by tech-
nology (black filled arrow).
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and behavior is David Marr’s levels of understanding of complex

systems, originally fashioned as a critique of reductionist work in

neurophysiology (Marr, 1982/2010). We do not intend to rehash

or dissect Marr’s particular formulation, as this has been done

many times before, and sometimes arguments over the defini-

tions of his three levels—or whether there should more than

three—obscure the central and deep point made by Marr (and

many others before and after [Anderson, 1972; Bechtel, 2008;

Carandini, 2012; Cooper and Peebles, 2015; Oatley, 1978; Tin-

bergen, 1963; Badre et al., 2015; Fetsch, 2016; Frank and Badre,

2015; Schall, 2004]): understanding something is not the same

as just describing it or knowing how to intervene to change it.

To most it is not news that description is not understanding,

but too often in neuroscience causal efficacy is taken as equal

to understanding.

Marr took a strong position on the inadequacy of a strictly

neurophysiological approach to understanding: ‘‘.trying to

understand perception by understanding neurons is like trying

to understand a bird’s flight by studying only feathers. It just

cannot be done’’ (Marr, 1982/2010) (Figure 2). Marr’s main

intuition was that it is much more difficult to infer from the neu-

ral hardware (or implementation; level 3) what algorithm (level

2) the nervous system is employing as compared to getting to

it via an analysis of the computational problem (level 1) it is

trying to solve. Marr’s main objection to trying to understand

the brain by recording from neurons was that this only leads

to descriptions rather than explanations. A description of neu-

ral activity and connections is not synonymous with knowing

what they are doing to cause behavior. Even strong believers

in the work done at the level of neurons and molecules (the im-

plementation level) concede Marr’s point (Bickle, 2015). An

analogy that helps get this point across is understanding of

the game of chess. Understanding the game does not depend

on knowing anything about the material out of which the board

or chess pieces are made. Indeed, Marr suggested that the

details of the nervous system may not even matter. While it

is true that the physical properties of the chess pieces can

impinge on application of the rules—for example, if one inad-

vertently gives a child a chess set for which all the pieces are

too heavy for her to pick up. The ‘‘therapeutic’’ solution is ligh-

ter chess pieces, but this in no way has changed the analysis
or understanding of chess. This chess analogy serves to make

an important point: well-designed behavioral experiments

in the absence of work at the neural level can be highly infor-

mative on their own. Behavioral experiments often are a

necessary first step before a subsequent mutually beneficial

knowledge loop is set up between implementation and behav-

ioral level work.

A more concrete example of the problems that arise if neural

data are used to infer a psychological process comes from the

debates regarding the behavioral relevance of ‘‘mirror neurons.’’

Mirror neurons, first discovered in the premotor cortex of mon-

keys, fire whether the monkey itself performs a particular motor

goal or observes another individual doing so (di Pellegrino et al.,

1992). A huge number of variants of these experiments have

been done in both humans and monkeys, but they all have the

same general approach: show a common neuronal firing (or

fMRI or EEG/MEG activation pattern) when a goal is achieved

either in the first person or observed in the third person. Interpre-

tation then has the following logic: as neurons can be decoded

for intention in the first person, and these same neurons decoded

for the same intention in the third person, then activation of the

mirror neurons can be interpreted as meaning that the primate

has understood the intention of the primate it is watching. The

problem with this attempt to posit an algorithm for ‘‘understand-

ing’’ based on neuronal responses is that no independent

behavioral experiment is done to show evidence that any kind

of understanding is actually occurring, understanding that could

then be correlated with the mirror neurons. This is a key error in

our view: behavior is used to drive neuronal activity but no either/

or behavioral hypothesis is being tested per se. Thus, an inter-

pretation is being mistaken for a result; namely, that the mirror

neurons understand the other individual. Additional behavioral

evidence that the participant understands the other individual

is lacking. This tendency to ascribe psychological properties to

single neuron activity that can only be sensibly ascribed to a

whole behaving organism is known as the mereological fal-

lacy—a fallacy that we neuroscientists continue to fall for even

though we’ve known about it since Aristotle’s De Anima (Smit

and Hacker, 2014). Thus, what is needed is a better a priori test-

able framework for behavioral-level understanding that can lead

to more thoughtfully designed neurophysiological experiments.
Neuron 93, February 8, 2017 483
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Indeed, to the degree that action understanding has been exam-

ined in patients, the evidence does not support a role for the pu-

tative mirror neuron mechanism (Hickok, 2009).

A recent review exemplifies the neuroscience zeitgeist by stat-

ing that the time has come to go from considering individual neu-

rons as the functional units of the nervous system to ensembles

of neurons (circuits, networks) (Yuste, 2015). The main argument

is that ensembles generate states that would never be appreci-

ated by recording one neuron at a time. The claim is then

made that, with the application of new technologies (e.g., two-

photon imaging, multielectrode recordings, etc.), identification

of these neural states will help us better understand the link be-

tween the brain and behavior (although again behavior is at best

given backseat status) (Yuste, 2015). No overt new theory, how-

ever, is offered that will bridge ensemble activity and behavior. It

is therefore unclear how fundamentally different it really is,

conceptually, to move from ‘‘neuron’’ to ‘‘neurons.’’ Modeling

and studying the responses of the neural substrate on any

scale—large or small—will not by itself lead to insights about

how behavior is generated. One reason for this is that the prop-

erties of neural tissue may bemore diverse than the subset actu-

ally exploited for natural behaviors (Figures 1A and 1D).

Without well-characterized behavior and theories that can act

as a constraint on circuit-level inferences, brains and behavior

will be like two ships passing in the night. The field has been

here before. Concerns with the complete-circuit-description

approach were already recognized almost 40 years ago with

the publication—along with extensive accompanying commen-

tary—of an article titled ‘‘Are Central Pattern Generators Under-

standable?’’ (Selverston, 1980). A plea, similar to those we hear

today, was made for ever more detailed characterization of each

element in the circuit and specification of the synaptic connectiv-

ity between these elements. Many of the commentaries pointed

out, however, that increasingly complete descriptions at one

level do not serve as a bridge to the next level. For example,

Sten Grillner wrote that a central pattern generator may be un-

derstood better using the intentional stance, borrowing from

the philosopher Daniel Dennett (Dennett, 1989), which is the

view that when an entity is designed for a purpose it is therefore

subject to rational rules that can be determined by studying its

behavior without necessarily having to analyze all its physical

parts (comment by Grillner in Selverston, 1980).

The phenomenon at issue here, when making a case for

recording from populations of neurons or characterizing whole

networks, is emergence—neurons in their aggregate organiza-

tion cause effects that are not apparent in any single neuron.

Following this logic, however, leads to the conclusion that

behavior itself is emergent from aggregated neural circuits and

therefore should also be studied in its own right. An example of

an emergent behavior that can only be understood at the algo-

rithmic level, which in turn can only be determined by studying

the emergent behavior itself, is flocking in birds. First one has

to observe the behavior and then one can begin to test simple

rules that will lead to reproduction of the behavior, in this

case best done through simulation. The rules are simple—for

example, one of them is ‘‘steer to average heading of neighbors’’

(Reynolds, 1987). Clearly, observing or dissecting an individual

bird, or even several birds could never derive such a rule. Substi-
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tute flocking with a behavior like reaching, and birds for neurons,

and it becomes clear how adopting an overly reductionist

approach can hinder understanding.

How has neuroscience dealt with this persistent gap between

explanation and description? It has opted to favor interventionist

causal versions of explanation. Unfortunately, there are no short-

cuts in the trajectory from psychology, cognition, perception,

and behavior to neurons and circuits. Onemight argue that tech-

niques now exist that make it possible to manipulate neural

circuits directly, for example, with optogenetics or transcranial

magnetic stimulation, so that causal relations—and not just

correlations—can be discovered (Bickle, 2015). The critical

point, however, is that causal-mechanistic explanations are

qualitatively different from understanding how component mod-

ules perform the computations that then combine to produce

behavior.

The distinction between causal claims and understanding via

algorithmic or computational processes should be apparent

from argument alone. That said, the recent study by Jonas and

Kording (Jonas and Kording, 2017) we referred to earlier pro-

vides an empirical demonstration of the fundamental difference

between intervening and recording versus understanding how

information flows through processing steps. The study poses

the question of whether a neuroscientist could understand a

microprocessor. They applied numerous neuroscience tech-

niques to a high-fidelity simulation of a classic video gamemicro-

processor (the ‘‘brain’’) in an attempt to understand how it

controls the initiation of three well-known videogames (which

they dubbed as ‘‘behaviors’’) originally programmed to run on

that microprocessor. Crucial to the experiment was the fact

that it was performed on an object that is already fully under-

stood: the fundamental fetch-decode-execute structure of a

microprocessor can be drawn in a diagram. Understanding the

chip using neuroscientific techniques would therefore mean

being able to discover this diagram. In the study, (simulated)

transistors were lesioned, their tuning determined, local field po-

tentials recorded, and dimensionality reduction performed on

activity across all the transistors. The result was that none of

these techniques came close to reverse engineering the stan-

dard stored-program computer architecture (Jonas and Kord-

ing, 2017).

A number of noteworthy points emerge from this study that

should be further highlighted. The treatment of ‘‘behavior’’

perfectly represents how the neuroscience field typically tends

to work with this concept. The behavioral data analyzed con-

sisted of 10 s of spontaneous activity with no player actually

playing the game (Jonas and Kording, 2017). This is a fragment

of activity, which we refer to as ‘‘stimulus-response’’ (Box 1) to

distinguish it from behavior, an adaptive pattern of activity (i.e.,

one that enhances fitness). As such, this activity is a starting

point that is unlikely to result in understanding no matter how

advanced the subsequent analysis. But let’s suppose that

instead of a fragment, we have a complete activity map for an

entire game played by a person. Let’s further suppose that a

much better job, using better analysis algorithms, could be

done with the data. We suggest this would similarly lead to no

meaningful insights into the processor’s functional architecture,

since again no behavioral-level hypothesis is being tested; there
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is no conceptual structure in place. Which of an infinite set of

potentially interesting patterns in the data should be selected

for further investigation (see Figure 1C, overly constrained

behavior)? The best way to answer this would be to examine

the game-play—the behavior—itself. An engineer trying to

make a copy of the machine would generate a high-level task

analysis of what the microprocessor needs to do in order to

play its part of the game. For example, she might study the on-

screen positions, shapes, and colors of agents over time, the

value of point scores, and the responses to joystick input gener-

ated by the player. Then she might ask how is the chip in the ma-

chine fulfilling these higher-order needs of game-play. From that

starting point, more productive work on the role of specific por-

tions of the chip would be possible.

Thus, two questions need to be asked. First, is causal-mech-

anistic explanation at the neural level better in principle than

algorithmic or computational accounts of behavior? Second, is

causal-mechanistic explanation sufficient to explain a behavioral

phenomenon? Clearly knowing the sufficient and necessary

conditions to evoke a behavior as found through an optogenetic

or similar manipulation can fall far short of knowing the rules

needed to instruct a robot or computer to perform the activity

in question. Thus, we would argue that if the question is ‘‘how

does the brain lead to behavior?’’ we are first asking why is the

brain performing this behavior and then asking how is it doing

it. So using the flying analogy (Figure 2), once we agree that

bird flight is an adaptive behavior, we then determine that it flies

by flapping it wings and not by wiggling its feet. Once we have

worked this out, we can start studying the feathers that make

up the wing. Seen this way, understanding that the flapping of

wings is critical to flight aids the subsequent study of feathers.

It is unlikely that, from the outset, studying an ostrich feather in

isolation would lead to the conclusion that there is such a phe-

nomenon as flight or even that feather-like structures would be

useful for flight.

Why Higher-Level Concepts Are Needed to Understand
Neuronal Results: The Nature of ‘‘Mechanism’’
Why is it the case that explanations of experiments at the neural

level are dependent on higher-level vocabulary and concepts?

The answer is that this dependency is intrinsic to the very

concept of ‘‘mechanism.’’ A mechanism can be defined as ‘‘a

structure performing a function in virtue of its component parts,

component operations, and their organization. The orchestrated

functioning of themechanism is responsible for one ormore phe-

nomena’’ (Bechtel, 2008, p. 13). Crucially, the components of a

mechanism do different things than the mechanism organized

as a whole (i.e., emergence) (Bechtel, 2008). A reductionist treat-

ment of the components must be combined with investigation of

how the total mechanism is organized and how it behaves when

embedded in an environment; an approach that unavoidably

spans two levels (Bechtel, 2008) (Box 1). Even the reductionist

idea of causality needs to be qualified. An idea related to emer-

gence is that of ‘‘downward causation.’’ Take, for example, the

cardiac rhythm—a behavior that is the net consequence of the

interplay between a cell’s membrane and the ion channels in it

(Noble, 2012). The conceptual point is that the ion channels do

not cause the cardiac rhythm—instead the rhythm just is the
combination of the higher level of the cell membrane and the

lower level of ion channels. So even when causality claims are

sought they often only make sense when all levels are consid-

ered together simultaneously rather than seeing the higher level

as subordinate or collapsible to the lower level. Ion channels do

not beat, heart cells do. Neural circuits do not feel pain, whole

organisms do.

A potential objection to this might be to say, ‘‘Who cares what

philosophers say about the differences between psychology

and neuroscience, or reductionism in general? We are scien-

tists, not philosophers!’’ The answer to this is simple: there is

no escape from philosophy. Every scientist takes a philosoph-

ical position, either tacitly or explicitly, whenever they state

that a result is ‘‘important,’’ ‘‘fundamental,’’ or ‘‘interesting.’’

This is because such assertions are always a judgment from

outside of science. There is no ‘‘interesting’’ variable inherent

to the data that can be objectively plotted on a graph—abstract

reasoning and normative claims cannot be substituted by, or

obtained from, data. Tacit awareness that causal manipulative

work, which tests necessity and sufficiency claims, is not the

same as understanding is apparent with common sentences

like, ‘‘The circuit X is involved in behavior Y.’’ This is, however,

just a restatement of the correlation or causal relation and

does no extra explanatory work. The italicized word is known

as a filler term, which indicates the lack of an explicit conceptual

framework for the mapping between circuit and behavior

(Craver, 2008) and so just fills in for it (Figure 3). Importantly,

however, the use of filler terms signals a tacit awareness of

the lack of, and a desire for, a different kind of understanding,

which we argue can be obtained by doing empirical and theo-

retical behavioral work. This work would complement causal

explanations at the neural and circuit level. A nice statement

of this dual view of understanding in neuroscience was made

by the cognitive scientist Longuet-Higgins, ‘‘In so far as the

neurophysiologist is concerned to understand how the brain

works, he must equip himself with a non-physiological account

of the tasks which the brain and its peripheral organs are able to

perform; only then can he form mature hypotheses as to how

these tasks are carried out by the available ‘hardware’—to

borrow a phrase from computing science’’ (Longuet-Higgins,

1972, p. 256).

Behaviorally Driven Neuroscience Yields More
Complete Insights
Herewe describe four examples of whatwe take to be the essen-

tial interplay between computational theories and algorithmic

formulations of behaviors, on the one hand, and their neural im-

plementation, on the other.

Bradykinesia

Bradykinesia is one of the cardinal symptoms of Parkinson’s dis-

ease, which ismanifest as a lack ofmovement vigor. Bradykinesia

is causally related to dopamine depletion in the substantia nigra

and is partially and transiently reversed by increasing dopamine

with medication. Do these facts truly help us understand why

dopamine depletion leads to bradykinesia? The answer is clearly

no—loss of a neurotransmitter may explain the necessary and

sufficient starting conditions for bradykinesia, and indeed the

investigation of these starting conditions—dopaminergic cell
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death—is amajor area of ongoingwork at the cellular level. Never-

theless, work restricted to this level cannot explain why dopamine

depletion causes a loss of vigor. This is also true when neural

correlates are found. In contrast, psychophysical studies in pa-

tients with Parkinson disease suggested that low vigor in these

patients is caused by a loss of implicit motivation for moving

fast because of a skewed cost function containing effort and ac-

curacy terms (Mazzoni et al., 2007). These human psychophysical

experiments then led to analogously designed experiments in

mice that demonstrated that there are cells in the dorsal striatum

whose activity correlates with movement vigor, and that suppres-

sion of these cells optogenetically reduces vigor (Panigrahi et al.,

2015). Note again that these mouse experiments very much

adhere to the causal interventionist approach to explanation.

The complete interpretation of these experiments, however, re-

quires the explanatory framework provided by the initial human

behavioral work.

Sound Localization

The study of sound localization in avian and mammalian brains

provides a nice example of the value of the behaviorally driven

approach we are advocating. In the dark, both avian (e.g., barn

owls) and mammalian (e.g., gerbils) brains must localize sound

sources in the horizontal plane (that is, left or right with respect

to their own body plan). The behavioral problem is thus well

specified: namely, to localize a sound source based only on audi-

tory cues.

One way to solve this problem is with inter-aural time differ-

ence cues. Away to calculate sound source location on the basis

of such time-difference cues in a principled way was proposed

by Jeffress (Jeffress, 1948). He showed that the computational

goal could be achieved via an algorithm that combines delay

lines (one waveform from each source, or ear) with coincidence

detectors, enabling a temporal activation pattern to be trans-

lated into a place code. In subsequent decades, Jeffress’ influ-

ential model stimulated a range of anatomical, physiological,

psychophysical, and formal investigations to understand sound

localization (for an excellent review, see Grothe, 2003). In several

tour-de-force experiments, the predictions of this algorithmic

model were in large part confirmed at the implementation level
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in barn owls. That is to say, the algorithmi-

cally inspired experiments sought to

identify possible implementations of the

procedures, such as delay lines and coin-

cidence detectors.
Given that success, we now have a causal, mechanistic expla-

nation of barn owl sound localization that is embedded in a

computational theory. The specific algorithm follows from the

details of the circuit (e.g., the relevant nuclei of the barn owl

are organized in a manner that directly licenses that algorithm

and not some other formal procedure). But, crucially, to identify

the precise circuitry that underpins delay-line-plus-coincidence

computation, the computational level (behavioral) characteriza-

tion and the algorithmic hypothesis were necessary prerequi-

sites to identify the neural substrates. It is hard to imagine how

(even extensive) recordings, staining, and anatomical studies

of the barn owl auditory system in the absence of such a behav-

iorally motivated computational theory would have yielded such

a rich explanatory framework.

It was subsequently discovered that the mammalian auditory

system, such as in gerbils, solves the same computational

problem using a different algorithm with different implementa-

tion at the circuit level (Grothe, 2003). This finding is a compel-

ling example of multiple realizability and deep degeneracy,

since different implementational features yield different algo-

rithms, but both solve the same computational problem

(Katz, 2016; Marom et al., 2009). Implementation/circuit A

yields algorithm A0, which solves computational goal X; and

implementation B yields algorithm B0, which also solves

computational goal X (Figure 1D). Once again, without formally

specified analyses at the behavioral level as well as explicit

algorithmic hypotheses, these fully developed mechanistic ac-

counts would have been hard, indeed perhaps impossible, to

identify.

Electrolocation

The neurobiology of weakly electric fish is grounded in compar-

ative, behavioral, and evolutionary analyses. Through a series of

studies, Walter Heiligenberg was able to provide perhaps the

most complete understanding of a vertebrate circuit from sen-

sory input through to motor output in his analysis of the jamming

avoidance response (JAR). JAR is a natural behavior (although

possibly initially discovered as a stimulus response [Watanabe

and Takeda, 1963]) in which two weakly electric fish that are dis-

charging an oscillating electric field at the same frequency will
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modify their discharge frequencies so as to avoid ‘‘jamming’’

each other’s electrolocation system (Heiligenberg, 1991). This

is important because their ability to localize objects in the dark

is mediated by sensing distortions to their self-generated field.

Analysis of the behavior was first performed by investigators

who built a simple virtual world (Box 1) for electric fish: a small

tank in which a fish’s own electric field was picked up, then

slightly shifted in frequency and fed back, resulting in the reliable

elicitation of what is now called the JAR (Watanabe and

Takeda, 1963).

As the electric field is controlled by the fish’s motor system, it

enabled the complete characterization of a behavior using pre-

cisely controlled signals and set the groundwork for Heiligen-

berg’s subsequent discoveries of the circuits underlying the

behavior (Heiligenberg, 1991). From that period forward, electric

fish were typically studied by applying field distortions across

the entire fish. As it turns out, these ‘‘wide-field’’ signals are

interpreted by the fish as communication signals, since electro-

location targets such as prey result in focal ‘‘narrow-field’’ distor-

tions. This was not fully understood until prey capture behavior

was automatically tracked in three dimensions, and then an

entire suite of empirically validatedmodels was used to compute

the neuronal signal going to the brain over the course of prey

capture behavior (MacIver et al., 2001; Nelson and MacIver,

1999; Snyder et al., 2007). Once investigators started applying

distortions in focal manner to mimic the effect of prey, they un-

masked a filtering system within the hindbrain that processed

these signals differently from the wide-field signals that had

been formerly been examined (reviewed in Fortune, 2006). The

point is that even within a behaviorally oriented model system,

understanding key components of this system did not enable a

full understanding of how the brain processes signals related

to predation until careful behavioral and computational simula-

tion work was done.

Motor Learning

A final example of the benefits of a well-motivated behavioral

perspective comes from motor learning. Motor learning is often

studied using adaptation paradigms in which participants are

subjected to an external perturbation, which causes systematic

errors that are then corrected (Shadmehr et al., 2010). A large

body of empirical and theoretical work, originating in large part

from Marr himself, has suggested a crucial role for cerebellar

circuitry for this kind of learning (Therrien and Bastian, 2015). In

essence, Marr initially believed—prior to elaborating his idea of

levels of analysis—that the mechanism of error-based learning

could be reverse-engineered from examination at the circuit

level. Indeed, much work after Marr has made considerable

progress in determining how cerebellar circuitry performs er-

ror-based learning. Crucially, however, it is now known from

careful psychophysical work that many distinct learning algo-

rithms operate together to counter the effects of a perturbation

during adaptation, even though phenotypically their summed

behavior can look like pure error-based cerebellar learning

(Huang et al., 2011; Taylor et al., 2014). This is a further example

of multiple realizability (Figure 1D), a long-standing basis for an

objection to reductionism (Sober, 1999). The core argument is

that if there are many ways to neurally generate the same

behavior, then the properties of a single circuit at best are a
particular instantiation and do not reveal a general design

principle.

The distinct algorithms operating in adaptation experiments

include error-based learning, reinforcement learning, and

cognitive strategies (Huberdeau et al., 2015). The relative

weighting of these processes depends on how the task is

framed with respect to the kind of feedback and instructions

given. For example, when subjects are given endpoint feed-

back and instruction they solve the same visuomotor rotation

task differently to when no instruction is given and they are

provided with continuous visual feedback. This higher-level or-

ganization operates at the level of the global task goal, which

can only be identified top-down by observing the summed

behavior and then decomposing it psychophysically, not by

first knowing how each of these components is neurally imple-

mented (Taylor et al., 2014); the adaptation task is perceived

and solved by the whole brain in a body, not just by any given

circuit component.

Two points are illustrated with these four examples. The first

is that experiments at the level of neural substrate are best de-

signed with hypotheses based on pre-existing behavioral work

that has discovered or proposed candidate algorithmic and

computational processes (for a range of arguments why experi-

mental work based on algorithm-level hypotheses is founda-

tional, see Cooper and Peebles, 2015). Second, the explanations

of the results at the neural level are almost entirely dependent on

the higher-level vocabulary and concepts derived from behav-

ioral work. Lower levels of explanation do not ‘‘explain away’’

higher levels.

The Need for More Pluralistic Neuroscience

If we look far into the future of our science, what will it

mean to say we ‘understand’ the mechanism of behav-

iour? The obvious answer is what may be called the neuro-

physiologist’s nirvana: the complete wiring diagram of

the nervous system of a species, every synapse labelled

as excitatory or inhibitory; presumably, also a graph, for

each axon, of nerve impulses as a function of time during

the course of each behaviour pattern . Real understand-

ing will only come from distillation of general principles at a

higher level, to parallel for example the great principles of

genetics—particulate inheritance, continuity of germ-line

and non-inheritance of acquired characteristics, domi-

nance, linkage, mutation, and so on . it seems possible

that at higher levels some important principles may be

anticipated from behavioural evidence alone. The major

principles of genetics were all inferred from external evi-

dence long before the internal molecular structure of

the gene was even seriously thought about.—Richard

Dawkins (Dawkins, 1976, pp. 7–8)

Neuroscience has been focused of late on neural circuits. This

is largely due to the recent development and incorporation of

techniques that allow both causal manipulation and the rapid

acquisition of large amounts of data. There seems to be an im-

plicit assumption that implementation-level description will not

only allow causal claims but also somehow lead to algorithmic

and computational understanding (‘‘naive’’ emergence). We
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contend that such an approach is simply not going to yield the

kind of insight and explanation that we ultimately demand from

the neurosciences, at least those parts concerned with devel-

oping an understanding of the link between brain and behavior

that goes beyond causality claims.

Since the causal-manipulation view by itself will not lead to un-

derstanding, amore pluralistic conception of mechanistic under-

standing can only help neuroscience. Pluralism in science can be

defined as ‘‘the doctrine advocating the cultivation of multiple

systems of practice in any given field of science’’ (Chang,

2012). Here we have argued that when scientists ask ‘‘how

does the brain generate behavior,’’ they are in fact asking a ques-

tion best approached through behavioral work, specifically task

analysis, aided by theory, that allows behavior to be decom-

posed into separable modules and processing operations.

AsWoese has argued (Woese, 2004), science is driven by both

technological advances and a guiding vision. The key is to bal-

ance their contributions, ‘‘.without the proper technological ad-

vances the road ahead is blocked. Without a guiding vision there

is no road ahead’’ (Woese, 2004, p. 173). Insofar as the goal of a

neuroscience research question is to explain some behavior, be

it a phenomenon from vision, communication, motor control,

navigation, language, memory, or decision making, the behav-

ioral research must be considered, for the most part, epistemo-

logically prior (Figure 4). The neural basis of behavior cannot be

properly characterized without first allowing for independent

detailed study of the behavior itself.
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Rennie, Nick Roy, Scott Small, Aaron Wong, and Jing Xu.
REFERENCES

Anderson, P.W. (1972). More is different. Science 177, 393–396.

Anderson, D.J., and Perona, P. (2014). Toward a science of computational
ethology. Neuron 84, 18–31.

Badre, D., Frank, M.J., and Moore, C.I. (2015). Interactionist Neuroscience.
Neuron 88, 855–860.

Bargmann, C.I. (1998). Neurobiology of the Caenorhabditis elegans genome.
Science 282, 2028–2033.

Bass, A.H., and Chagnaud, B.P. (2012). Shared developmental and evolu-
tionary origins for neural basis of vocal-acoustic and pectoral-gestural
signaling. Proc. Natl. Acad. Sci. USA 109 (Suppl 1 ), 10677–10684.

Bechtel, W. (2008). Mental Mechanisms: Philosophical Perspectives onCogni-
tive Neuroscience (Routledge).

Benichov, J.I., Benezra, S.E., Vallentin, D., Globerson, E., Long, M.A., and
Tchernichovski, O. (2016). The forebrain song system mediates predictive
call timing in female and male zebra finches. Curr. Biol. 26, 309–318.

Bianco, I.H., Kampff, A.R., and Engert, F. (2011). Prey capture behavior evoked
by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5, 101.

Bickle, J. (2015). Marr and reductionism. Top. Cogn. Sci. 7, 299–311.

Bickle, J. (2016). Revolutions in neuroscience: Tool development. Front. Syst.
Neurosci. 10, 24.

Borjon, J.I., and Ghazanfar, A.A. (2014). Convergent evolution of vocal coop-
eration without convergent evolution of brain size. Brain Behav. Evol.
84, 93–102.

Carandini, M. (2012). From circuits to behavior: a bridge too far? Nat. Neurosci.
15, 507–509.

Chang, H. (2012). Is Water H2O?: Evidence, Realism and Pluralism
Volume 293 (Springer Science & Business Media).

http://refhub.elsevier.com/S0896-6273(16)31040-6/sref1
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref2
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref2
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref3
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref3
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref4
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref4
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref5
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref5
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref5
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref5
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref6
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref6
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref7
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref7
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref7
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref8
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref8
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref9
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref10
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref10
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref11
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref11
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref11
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref12
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref12
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref13
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref13


Neuron

Perspective
Cooper, R.P., and Peebles, D. (2015). Beyond single-level accounts: the role of
cognitive architectures in cognitive scientific explanation. Top. Cogn. Sci. 7,
243–258.

Craver, C.F. (2008). Explaining the brain: mechanisms and the mosaic unity of
neuroscience. Psychol. Med. 38, 899–900.

Dawkins, R. (1976). Hierarchical organisation: A candidate principle for
ethology. In Growing Points in Ethology, P. Bateson and R.A. Hinde, eds.
(Cambridge University Press), pp. 7–54.

Dennett, D.C. (1989). The Intentional Stance (MIT Press).

di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (1992).
Understanding motor events: a neurophysiological study. Exp. Brain Res. 91,
176–180.

Dombeck, D.A., and Reiser, M.B. (2012). Real neuroscience in virtual worlds.
Curr. Opin. Neurobiol. 22, 3–10.

Fetsch, C.R. (2016). The importance of task design and behavioral control for
understanding the neural basis of cognitive functions. Curr. Opin. Neurobiol.
37, 16–22.

Fortune, E.S. (2006). The decoding of electrosensory systems. Curr. Opin.
Neurobiol. 16, 474–480.

Frank, M.J., and Badre, D. (2015). How cognitive theory guides neuroscience.
Cognition 135, 14–20.

Gomez-Marin, A., Paton, J.J., Kampff, A.R., Costa, R.M., and Mainen, Z.F.
(2014). Big behavioral data: psychology, ethology and the foundations of
neuroscience. Nat. Neurosci. 17, 1455–1462.

Grothe, B. (2003). New roles for synaptic inhibition in sound localization. Nat.
Rev. Neurosci. 4, 540–550.

Heiligenberg, W. (1991). Neural Nets in Electric Fish (MIT Press).

Hickok, G. (2009). Eight problems for the mirror neuron theory of action under-
standing in monkeys and humans. J. Cogn. Neurosci. 21, 1229–1243.

Huang, V.S., Haith, A., Mazzoni, P., and Krakauer, J.W. (2011). Rethinking mo-
tor learning and savings in adaptation paradigms: model-free memory for suc-
cessful actions combines with internal models. Neuron 70, 787–801.

Huberdeau, D.M., Krakauer, J.W., and Haith, A.M. (2015). Dual-process
decomposition in human sensorimotor adaptation. Curr. Opin. Neurobiol.
33, 71–77.

Jeffress, L.A. (1948). A place theory of sound localization. J. Comp. Physiol.
Psychol. 41, 35–39.

Jonas, E., and Kording, K. (2017). Could a neuroscientist understand a micro-
processor? PLoS Comput. Biol. 13, e1005268.

Kahneman, D. (2011). Thinking, Fast and Slow (Macmillan).

Katz, P.S. (2016). Evolution of central pattern generators and rhythmic behav-
iours. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150057.

Kay, L.E. (1996). TheMolecular Vision of Life: Caltech, the Rockefeller Founda-
tion, and the Rise of the New Biology (Oxford University Press).

Leininger, E.C., and Kelley, D.B. (2015). Evolution of Courtship Songs in Xen-
opus : Vocal Pattern Generation and Sound Production. Cytogenet. Genome
Res. 145, 302–314.

Levitis, D.A., Lidicker, W.Z., and Freund, G. (2009). Behavioural biologists
don’t agree on what constitutes behaviour. Anim. Behav. 78, 103–110.

Longuet-Higgins, H.C. (1972). The algorithmic description of natural language.
Proc. R. Soc. Lond. B Biol. Sci. 182, 255–276.

MacIver, M.A. (2009). Neuroethology: From Morphological Computation to
Planning. In The Cambridge Handbook of Situated Cognition, P. Robbins
and M. Aydede, eds. (Cambridge University Press), pp. 480–504.

MacIver, M.A., Sharabash, N.M., and Nelson, M.E. (2001). Prey-capture
behavior in gymnotid electric fish: motion analysis and effects of water con-
ductivity. J. Exp. Biol. 204, 543–557.
Marder, E., and Goaillard, J.M. (2006). Variability, compensation and homeo-
stasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574.

Marom, S., Meir, R., Braun, E., Gal, A., Kermany, E., and Eytan, D. (2009). On the
precarious path of reverse neuro-engineering. Front. Comput. Neurosci. 3, 5.

Marr, D. (1982/2010). Vision: A Computational Approach (MIT Press).

Mazzoni, P., Hristova, A., and Krakauer, J.W. (2007). Why don’t we move
faster? Parkinson’s disease, movement vigor, and implicit motivation.
J. Neurosci. 27, 7105–7116.

Nelson, M.E., andMacIver, M.A. (1999). Prey capture in the weakly electric fish
Apteronotus albifrons: sensory acquisition strategies and electrosensory con-
sequences. J. Exp. Biol. 202, 1195–1203.

Noble, D. (2012). A theory of biological relativity: no privileged level of causa-
tion. Interface Focus 2, 55–64.

Oatley, K. (1978). Perceptions and Representations: The Theoretical Bases of
Brain Research and Psychology (Methuen).

Panigrahi, B., Martin, K.A., Li, Y., Graves, A.R., Vollmer, A., Olson, L., Mensh,
B.D., Karpova, A.Y., and Dudman, J.T. (2015). Dopamine is required for the
neural representation and control of movement vigor. Cell 162, 1418–1430.

Patterson, B.W., Abraham, A.O., MacIver, M.A., and McLean, D.L. (2013).
Visually guided gradation of prey capture movements in larval zebrafish.
J. Exp. Biol. 216, 3071–3083.

Poeppel, D., and Embick, D. (2005). Defining the relation between linguistics
and neuroscience. In Defining the Relation between Linguistics and Neurosci-
ence Twenty-First Century Psycholinguistics: Four Cornerstones, A.E. Cutler,
ed. (Lawrence Erlbaum), pp. 103–118.

Reynolds, C.W. (1987). Flocks, herds and schools: A distributed behavioral
model. Comput. Graph. 21, 25–34.

Schall, J.D. (2004). On building a bridge between brain and behavior. Annu.
Rev. Psychol. 55, 23–50.

Selverston, A.I. (1980). Are central pattern generators understandable? Behav.
Brain Sci. 3, 535–540.

Shadmehr, R., Smith, M.A., and Krakauer, J.W. (2010). Error correction, sen-
sory prediction, and adaptation in motor control. Annu. Rev. Neurosci.
33, 89–108.

Smit, H., and Hacker, P.M. (2014). Sevenmisconceptions about the mereolog-
ical fallacy: A compilation for the perplexed. Erkenntnis 79, 1077–1097.

Snyder, J.B., Nelson, M.E., Burdick, J.W., and MacIver, M.A. (2007). Omnidi-
rectional sensory and motor volumes in electric fish. PLoS Biol. 5, e301.

Sober, E. (1999). The multiple realizability argument against reductionism.
Philos. Sci. 66, 542–564.

Sternberg, S. (2011). Modular processes in mind and brain. Cogn. Neuropsy-
chol. 28, 156–208.

Takahashi, D.Y., Narayanan, D., and Ghazanfar, A.A. (2012). A computational
model for vocal exchange dynamics and their development in marmoset
monkeys. In 2012 IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL), http://dx.doi.org/10.1109/DevLrn.
2012.6400844.

Takahashi, D.Y., Narayanan, D.Z., and Ghazanfar, A.A. (2013). Coupled oscil-
lator dynamics of vocal turn-taking in monkeys. Curr. Biol. 23, 2162–2168.

Takahashi, D.Y., Fenley, A.R., Teramoto, Y., Narayanan, D.Z., Borjon, J.I.,
Holmes, P., and Ghazanfar, A.A. (2015). LANGUAGE DEVELOPMENT. The
developmental dynamics of marmoset monkey vocal production. Science
349, 734–738.

Taylor, J.A., Krakauer, J.W., and Ivry, R.B. (2014). Explicit and implicit con-
tributions to learning in a sensorimotor adaptation task. J. Neurosci. 34,
3023–3032.

Therrien, A.S., and Bastian, A.J. (2015). Cerebellar damage impairs internal
predictions for sensory and motor function. Curr. Opin. Neurobiol. 33,
127–133.
Neuron 93, February 8, 2017 489

http://refhub.elsevier.com/S0896-6273(16)31040-6/sref14
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref14
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref14
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref15
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref15
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref16
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref16
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref16
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref17
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref18
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref18
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref18
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref19
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref19
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref20
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref20
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref20
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref21
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref21
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref22
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref22
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref23
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref23
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref23
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref24
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref24
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref25
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref26
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref26
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref27
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref27
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref27
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref28
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref28
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref28
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref29
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref29
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref30
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref30
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref31
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref32
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref32
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref33
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref33
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref34
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref34
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref34
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref35
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref35
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref36
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref36
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref37
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref37
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref37
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref38
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref38
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref38
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref39
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref39
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref40
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref40
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref41
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref42
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref42
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref42
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref43
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref43
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref43
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref44
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref44
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref45
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref45
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref46
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref46
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref46
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref47
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref47
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref47
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref48
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref48
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref48
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref48
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref49
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref49
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref50
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref50
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref51
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref51
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref52
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref52
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref52
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref53
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref53
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref54
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref54
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref55
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref55
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref56
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref56
http://dx.doi.org/10.1109/DevLrn.2012.6400844
http://dx.doi.org/10.1109/DevLrn.2012.6400844
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref58
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref58
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref59
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref59
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref59
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref59
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref60
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref60
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref60
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref61
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref61
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref61


Neuron

Perspective
Tinbergen, N. (1955). The Study of Instinct (Clarendon Press).

Tinbergen, N. (1963). On aims and methods of ethology. Zeitschr. Tierpsychol.
20, 410–433.

VonUexk€ull, J. (1992). A stroll through theworlds of animals andmen: A picture
book of invisible worlds. Semiotica 89, 319–391.

Watanabe, A., and Takeda, K. (1963). The change of discharge frequency by
A.C. stimulus in a weak electric fish. J. Exp. Biol. 40, 57–66.
490 Neuron 93, February 8, 2017
White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The struc-
ture of the nervous system of the nematode Caenorhabditis elegans. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340.

Woese, C.R. (2004). A new biology for a new century. Microbiol. Mol. Biol. Rev.
68, 173–186.

Yuste, R. (2015). From the neuron doctrine to neural networks. Nat. Rev. Neu-
rosci. 16, 487–497.

http://refhub.elsevier.com/S0896-6273(16)31040-6/sref62
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref63
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref63
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref64
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref64
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref64
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref65
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref65
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref66
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref66
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref66
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref67
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref67
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref68
http://refhub.elsevier.com/S0896-6273(16)31040-6/sref68

	Neuroscience Needs Behavior: Correcting a Reductionist Bias
	Introduction
	How Did We Get Here?
	Why We Still Need Behavior
	Why Higher-Level Concepts Are Needed to Understand Neuronal Results: The Nature of “Mechanism”
	Behaviorally Driven Neuroscience Yields More Complete Insights
	Bradykinesia
	Sound Localization
	Electrolocation
	Motor Learning

	The Need for More Pluralistic Neuroscience
	Acknowledgments
	References


